Groups of order p^2q , p > q both prime.

Let G be a group of order p^2q , with p > q both prime. Since 1 + kp divides qonly if k = 1, the Sylow p-subgroup S_p is normal in G. It follows that $G \cong S_p \rtimes_{\theta} \mathbf{Z}_q$ for some $\theta \colon \mathbf{Z}_q \to \operatorname{Aut}(S_p)$. If q does not divide $p^2 - 1$ then $1 + kq \neq p$ or p^2 , so 1 + kq does not divide p^2 unless k = 0. In this case, then, S_q too is normal, whence G is abelian, and so isomorphic to $\mathbf{Z}_{p^2} \times \mathbf{Z}_q$ or to $\mathbf{Z}_p \times \mathbf{Z}_p \times \mathbf{Z}_q$. Thus there is no more to do unless $q \mid (p^2 - 1)$, which is assumed from now on.

Assume further that θ is injective, since otherwise G is abelian.

Then check that with $W := \theta(\mathbf{Z}_q)$, G is isomorphic to the group of transformations $T_{z,w} : \mathcal{S}_p \to \mathcal{S}_p \ (z \in \mathcal{S}_p, w \in W)$ where

$$T_{z,w}(x) = wx + z.$$

To classify such groups, suppose first that $S_p \cong \mathbb{Z}_{p^2}$.

Lemma 1. Aut $\mathbf{Z}_{p^2} \cong \mathbf{Z}_{p^2}^*$ is cyclic, of order p(p-1).

Proof. We have seen the isomorphism before; and $|\mathbf{Z}_{p^2}^*| = \phi(p^2) = p(p-1)$. We also know that \mathbf{Z}_p^* is cyclic. Choose $z \in \mathbf{Z}_{p^2}^*$ so that its natural image in \mathbf{Z}_p^* is a generator. It holds that $z^a \equiv 1 \pmod{p^2} \implies z^a \equiv 1 \pmod{p} \implies (p-1)|a$. So the order of z is a multiple of p-1, and also is a divisor of p(p-1), and thus can only be p-1 or p(p-1). In the latter case, z generates $\mathbf{Z}_{p^2}^*$. In the former case, the binomial expansion gives

$$(z+p)^{p-1} \equiv z^{p-1} + (p-1)pz^{p-2} \equiv 1 - pz^{p-2} \not\equiv 1 \pmod{p^2}.$$

As before, z + p—which has the same image in \mathbf{Z}_p^* as z does—has order p-1 or p(p-1), and we've just seen that it can't be p-1, so it must be p(p-1), i.e., z + p generates $\mathbf{Z}_{p^2}^*$. Thus in any case, $\mathbf{Z}_{p^2}^*$ is indeed cyclic.

Remark. A similar argument shows, via induction, that $\mathbf{Z}_{p^n}^*$ is cyclic for any n > 0.

Clearly, an injective θ exists $\iff q|p(p-1)$, i.e., q|(p-1). So when q does divide p-1, we find, arguing as for groups of order pq, that there is just one nonabelian group of order p^2q having a cyclic S_p , namely, with W the unique order-q subgroup of $\mathbf{Z}_{p^2}^*$, the group of transformations $T_{z,w}: \mathbf{Z}_{p^2} \to \mathbf{Z}_{p^2}$ $(z \in \mathbf{Z}_{p^2}, w \in W)$ where

$$T_{z,w}(x) = wx + z.$$

Now the fun begins.

Suppose next that $S_p \cong \mathbf{Z}_p \times \mathbf{Z}_p$, a two-dimensional vector space over the field \mathbf{Z}_p . Any group automorphism of $\mathbf{Z}_p \times \mathbf{Z}_p$ is an invertible \mathbf{Z}_p -linear map (why?), and so $\operatorname{Aut}(\mathbf{Z}_p \times \mathbf{Z}_p)$ is isomorphic to the group $\operatorname{GL}_2(\mathbf{Z}_p)$ of invertible 2×2 matrices with \mathbf{Z}_p -entries.

Noting that any automorphism ϕ of G must take the unique order- p^2 subgroup $H := S_p$ to itself, and that H is abelian, deduce from the handout on isomorphisms of semi-direct products that, for two homomorphisms $\theta_i : \mathbb{Z}_q \to \operatorname{Aut}(S_p)$,

$$S_p \rtimes_{\theta_1} \mathbf{Z}_q \cong S_p \rtimes_{\theta_2} \mathbf{Z}_q \iff \theta_1(\mathbf{Z}_q) \text{ and } \theta_2(\mathbf{Z}_q) \text{ are conjugate subgroups of } \operatorname{Aut}(S_p).$$

Thus the classification problem becomes the linear-algebra problem of determining the conjugacy classes of order-q subgroups of $\operatorname{GL}_2(\mathbf{Z}_p)$. One often says two matrices in $\operatorname{GL}_2(\mathbf{Z}_p)$ are "similar" rather than "conjugate." (Both terms mean the same thing here.) How do we detect similarity?

Lemma 2. Let A be a 2×2 matrix over a field k. If A is not a scalar multiple of the identity matrix, then A is similar to the matrix

$$\begin{pmatrix} 0 & -d \\ 1 & t \end{pmatrix} \qquad (d = \det A, \ t = \ \text{trace} \ A.)$$

Proof. Representing elements of k^2 as 2×1 column vectors, let $T: k^2 \to k^2$ be the linear map given by left multiplication by A. If every vector in k^2 is an eigenvector of A, then A is a scalar multiple of the identity. (Show this, e.g., by using that $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are eigenvectors.)

Otherwise, some nonzero vector $v \in k^2$ is not an eigenvector of A, and the pair (v, Tv) forms a basis of k^2 . The matrix of T w.r.t. this basis has the form $\begin{pmatrix} 0 & a \\ 1 & b \end{pmatrix}$. This matrix, being similar to A, has the same determinant and trace, i.e., -a = d and b = t.

Corollary. Two non-scalar 2×2 matrices over k are similar iff they have the same eigenvalues.

Now we can start counting conjugacy classes. Henceforth, A is a matrix of order q, i.e., if I is the 2×2 identity matrix then $A^q = I$ and $A \neq I$. The eigenvalues of such an A are q-th roots of unity.

If these eigenvalues are both 1, and $A \neq I$, then Lemma 2 gives that A is similar to $B := \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$. By induction, one shows that for n > 0,

$$B^{n} = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}^{n} = \begin{pmatrix} 1-n & -n \\ n & n+1 \end{pmatrix}.$$

Hence $B^p = I$, hence $B^q \neq I$ (else B = I would follow), hence $A^q \neq I$. So the eigenvalues can't both be 1.

Recall that q divides $p^2 - 1$, so q divides p - 1 or p + 1, but not both if q is odd. There are, then, three cases to examine.

(A) q = 2.

- (B) $q|(p+1), q \not| (p-1).$
- (C) $q|(p-1), q \not| (p+1).$

(A) Two order-2 subgroup of $\operatorname{GL}_2(\mathbf{Z}_p)$ are conjugate if and only if their unique generators are similar. The eigenvalues of A are (-1, -1) or (1, -1). It follows that every order-2 subgroup of $\operatorname{GL}_2(\mathbf{Z}_p)$ is similar to one and only one of the three groups generated respectively by

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The corresponding three pairwise nonisomorphic semidirect products G have generators x, y, z which satisfy $x^p = y^p = z^2 = e$, xy = yx, and $zx = x^{-1}z$, $zy = y^{-1}z$, respectively $zx = x^{-1}z$, $zy = xy^{-1}z$, respectively zx = xz, $zy = y^{-1}z$. (The third of these is isomorphic to $\mathbf{Z}_p \times \mathbf{D}_{2p}$.)

(B) Since q doesn't divide p - 1, \mathbf{Z}_p^* has no elements of order q, that is, 1 is the only q-th root of unity in \mathbf{Z}_p . Hence the eigenvalues λ and λ' of A satisfy $\lambda\lambda' = \det A = 1$. If $\lambda = 1$, then $\lambda' = 1$, which, we've seen, can't happen. Since λ is a root of a quadratic equation—the characteristic equation of A—therefore $\mathbf{Z}_p[\lambda]$ is a quadratic extension of \mathbf{Z}_p (considered as a field); and this quadratic extension contains all the roots of the equation $X^q = 1$ (over \mathbf{Z}_p), namely the powers of λ .

Now if $B \neq I$ satisfies $B^q = I$, then the eigenvalues of B must be of the form $(\lambda^a, 1/\lambda^a)$ (a, q) = 1. Hence B is similar to A^a , and there is at most one conjugacy class of order-q subgroups of $\operatorname{GL}_2(\mathbb{Z}_p)$.

To show that there is at least one order-q subgroup, i.e., that there is an element of order q, we need only show that q divides the order of $\operatorname{GL}_2(\mathbf{Z}_p)$. But to specify an invertible $2 \times 2 \mathbf{Z}_p$ -matrix, we can put any one of the $p^2 - 1$ nonzero row vectors in the first row, and then put any one of the $p^2 - p$ row vectors which are not scalar multiples of the first row in the second row. Thus $\operatorname{GL}_2(\mathbf{Z}_p)$ has order $(p^2-1)(p^2-p)$, which is indeed divisible by q.

In conclusion, in this case there exists a unique nonabelian semidirect product.

(C) Now there are q q-th roots of unity, forming a subgroup, necessarily cyclic, of \mathbf{Z}_p^* , with generator, say, ζ . The eigenvalues of A must then have the form (ζ^a, ζ^b) , where at least one of a, b, say a, is not divisible by q; and then if $c = a^{-1} \pmod{q}$, A^c has eigenvalues $(\zeta, \zeta^d) \ (0 \le d < q)$, and A^c generates the same order-q subgroup, call it U, as A does.

Suppose B generates an order-q subgroup V, and that the eigenvalues of B are (ζ, ζ^e) . Then U is conjugate to V iff A is similar to some power B^f , i.e., the unordered pairs (ζ, ζ^d) and (ζ^f, ζ^{ef}) are the same. This means that either f = 1 and e = d or $f = d \neq 0$ and $e = d^{-1}$.

In conclusion, when q is odd and q|(p-1), the set of conjugacy classes of order-q subgroups of $\operatorname{GL}_2(\mathbf{Z}_p)$ corresponds 1-1 with the set consisting of the (q-3)/2 pairs (d, d^{-1}) $(d \neq d^{-1} \in \mathbf{Z}_q^*)$ together with the pairs (1, 1), (1, -1), and (1, 0). Thus there are (q+3)/2 such conjugacy classes, and correspondingly, there are (q+3)/2nonabelian semidirect products.

Question: Which of these is $\mathbf{Z}_p \times \mathbf{H}_{pq}$, where \mathbf{H}_{pq} is the nonabelian group of order pq?

Exercise. How many distinct nonabelian groups are there having the following orders?

98, 147 (cf. D&F, p. 185,#10), 847, 1183, 5887.