Groups of order $\mathbf{p}^{\mathbf{2}} \mathbf{q}, \mathbf{p}>\mathbf{q}$ both prime.

Let G be a group of order $p^{2} q$, with $p>q$ both prime. Since $1+k p$ divides q only if $k=1$, the Sylow p-subgroup \mathcal{S}_{p} is normal in G. It follows that $G \cong \mathcal{S}_{p} \rtimes_{\theta} \mathbf{Z}_{q}$ for some $\theta: \mathbf{Z}_{q} \rightarrow \operatorname{Aut}\left(\mathcal{S}_{p}\right)$. If q does not divide $p^{2}-1$ then $1+k q \neq p$ or p^{2}, so $1+k q$ does not divide p^{2} unless $k=0$. In this case, then, \mathcal{S}_{q} too is normal, whence G is abelian, and so isomorphic to $\mathbf{Z}_{p^{2}} \times \mathbf{Z}_{q}$ or to $\mathbf{Z}_{p} \times \mathbf{Z}_{p} \times \mathbf{Z}_{q}$. Thus there is no more to do unless $q \mid\left(p^{2}-1\right)$, which is assumed from now on.

Assume further that θ is injective, since otherwise G is abelian.
Then check that with $W:=\theta\left(\mathbf{Z}_{q}\right), G$ is isomorphic to the group of transformations $T_{z, w}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}\left(z \in \mathcal{S}_{p}, w \in W\right)$ where

$$
T_{z, w}(x)=w x+z
$$

To classify such groups, suppose first that $\mathcal{S}_{p} \cong \mathbf{Z}_{p^{2}}$.
Lemma 1. Aut $\mathbf{Z}_{p^{2}} \cong \mathbf{Z}_{p^{2}}^{*}$ is cyclic, of order $p(p-1)$.
Proof. We have seen the isomorphism before; and $\left|\mathbf{Z}_{p^{2}}^{*}\right|=\phi\left(p^{2}\right)=p(p-1)$. We also know that \mathbf{Z}_{p}^{*} is cyclic. Choose $z \in \mathbf{Z}_{p^{2}}^{*}$ so that its natural image in \mathbf{Z}_{p}^{*} is a generator. It holds that $z^{a} \equiv 1\left(\bmod p^{2}\right) \Longrightarrow z^{a} \equiv 1(\bmod p) \Longrightarrow(p-1) \mid a$. So the order of z is a multiple of $p-1$, and also is a divisor of $p(p-1)$, and thus can only be $p-1$ or $p(p-1)$. In the latter case, z generates $\mathbf{Z}_{p^{2}}^{*}$. In the former case, the binomial expansion gives

$$
(z+p)^{p-1} \equiv z^{p-1}+(p-1) p z^{p-2} \equiv 1-p z^{p-2} \not \equiv 1 \quad\left(\bmod p^{2}\right)
$$

As before, $z+p$-which has the same image in \mathbf{Z}_{p}^{*} as z does-has order $p-1$ or $p(p-1)$, and we've just seen that it can't be $p-1$, so it must be $p(p-1)$, i.e., $z+p$ generates $\mathbf{Z}_{p^{2}}^{*}$. Thus in any case, $\mathbf{Z}_{p^{2}}^{*}$ is indeed cyclic.

Remark. A similar argument shows, via induction, that $\mathbf{Z}_{p^{n}}^{*}$ is cyclic for any $n>0$.
Clearly, an injective θ exists $\Longleftrightarrow q \mid p(p-1)$, i.e., $q \mid(p-1)$. So when q does divide $p-1$, we find, arguing as for groups of order $p q$, that there is just one nonabelian group of order $p^{2} q$ having a cyclic \mathcal{S}_{p}, namely, with W the unique order- q subgroup of $\mathbf{Z}_{p^{2}}^{*}$, the group of transformations $T_{z, w}: \mathbf{Z}_{p^{2}} \rightarrow \mathbf{Z}_{p^{2}}\left(z \in \mathbf{Z}_{p^{2}}, w \in W\right)$ where

$$
T_{z, w}(x)=w x+z
$$

Now the fun begins.
Suppose next that $\mathcal{S}_{p} \cong \mathbf{Z}_{p} \times \mathbf{Z}_{p}$, a two-dimensional vector space over the field \mathbf{Z}_{p}. Any group automorphism of $\mathbf{Z}_{p} \times \mathbf{Z}_{p}$ is an invertible \mathbf{Z}_{p}-linear map (why?), and so $\operatorname{Aut}\left(\mathbf{Z}_{p} \times \mathbf{Z}_{p}\right)$ is isomorphic to the group $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$ of invertible 2×2 matrices with \mathbf{Z}_{p}-entries.

Noting that any automorphism ϕ of G must take the unique order- p^{2} subgroup $H:=\mathcal{S}_{p}$ to itself, and that H is abelian, deduce from the handout on isomorphisms of semi-direct products that, for two homomorphisms $\theta_{i}: \mathbf{Z}_{q} \rightarrow \operatorname{Aut}\left(\mathcal{S}_{p}\right)$, $\mathcal{S}_{p} \rtimes_{\theta_{1}} \mathbf{Z}_{q} \cong \mathcal{S}_{p} \rtimes_{\theta_{2}} \mathbf{Z}_{q} \Longleftrightarrow \theta_{1}\left(\mathbf{Z}_{q}\right)$ and $\theta_{2}\left(\mathbf{Z}_{q}\right)$ are conjugate subgroups of $\operatorname{Aut}\left(\mathcal{S}_{p}\right)$.

Thus the classification problem becomes the linear-algebra problem of determining the conjugacy classes of order-q subgroups of $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$.

One often says two matrices in $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$ are "similar" rather than "conjugate." (Both terms mean the same thing here.) How do we detect similarity?

Lemma 2. Let A be a 2×2 matrix over a field k. If A is not a scalar multiple of the identity matrix, then A is similar to the matrix

$$
\left(\begin{array}{cc}
0 & -d \\
1 & t
\end{array}\right) \quad(d=\operatorname{det} A, t=\operatorname{trace} A .)
$$

Proof. Representing elements of k^{2} as 2×1 column vectors, let $T: k^{2} \rightarrow k^{2}$ be the linear map given by left multiplication by A. If every vector in k^{2} is an eigenvector of A, then A is a scalar multiple of the identity. (Show this, e.g., by using that $\binom{1}{0}$, $\binom{0}{1}$, and $\binom{1}{1}$ are eigenvectors.)

Otherwise, some nonzero vector $v \in k^{2}$ is not an eigenvector of A, and the pair $(v, T v)$ forms a basis of k^{2}. The matrix of T w.r.t. this basis has the form $\left(\begin{array}{ll}0 & a \\ 1 & b\end{array}\right)$. This matrix, being similar to A, has the same determinant and trace, i.e., $-a=d$ and $b=t$.

Corollary. Two non-scalar 2×2 matrices over k are similar iff they have the same eigenvalues.

Now we can start counting conjugacy classes. Henceforth, A is a matrix of order q, i.e., if I is the 2×2 identity matrix then $A^{q}=I$ and $A \neq I$. The eigenvalues of such an A are q-th roots of unity.

If these eigenvalues are both 1 , and $A \neq I$, then Lemma 2 gives that A is similar to $B:=\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$. By induction, one shows that for $n>0$,

$$
B^{n}=\left(\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right)^{n}=\left(\begin{array}{cc}
1-n & -n \\
n & n+1
\end{array}\right) .
$$

Hence $B^{p}=I$, hence $B^{q} \neq I$ (else $B=I$ would follow), hence $A^{q} \neq I$. So the eigenvalues can't both be 1 .

Recall that q divides $p^{2}-1$, so q divides $p-1$ or $p+1$, but not both if q is odd.
There are, then, three cases to examine.
(A) $q=2$.
(B) $q \mid(p+1), q \nmid(p-1)$.
(C) $q \mid(p-1), q \nmid(p+1)$.
(A) Two order-2 subgroup of $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$ are conjugate if and only if their unique generators are similar. The eigenvalues of A are $(-1,-1)$ or $(1,-1)$. It follows that every order- 2 subgroup of $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$ is similar to one and only one of the three groups generated respectively by

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The corresponding three pairwise nonisomorphic semidirect products G have generators x, y, z which satisfy $x^{p}=y^{p}=z^{2}=e, x y=y x$, and $z x=x^{-1} z, z y=y^{-1} z$, respectively $z x=x^{-1} z, z y=x y^{-1} z$, respectively $z x=x z, z y=y^{-1} z$. (The third of these is isomorphic to $\mathbf{Z}_{p} \times \mathbf{D}_{2 p}$.)
(B) Since q doesn't divide $p-1, \mathbf{Z}_{p}^{*}$ has no elements of order q, that is, 1 is the only q-th root of unity in \mathbf{Z}_{p}. Hence the eigenvalues λ and λ^{\prime} of A satisfy $\lambda \lambda^{\prime}=\operatorname{det} A=1$. If $\lambda=1$, then $\lambda^{\prime}=1$, which, we've seen, can't happen. Since λ is a root of a quadratic equation-the characteristic equation of A-therefore $\mathbf{Z}_{p}[\lambda]$ is a quadratic extension of \mathbf{Z}_{p} (considered as a field); and this quadratic extension contains all the roots of the equation $X^{q}=1$ (over \mathbf{Z}_{p}), namely the powers of λ.

Now if $B \neq I$ satisfies $B^{q}=I$, then the eigenvalues of B must be of the form $\left(\lambda^{a}, 1 / \lambda^{a}\right)(a, q)=1$. Hence B is similar to A^{a}, and there is at most one conjugacy class of order- q subgroups of $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$.

To show that there is at least one order- q subgroup, i.e., that there is an element of order q, we need only show that q divides the order of $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$. But to specify an invertible $2 \times 2 \mathbf{Z}_{p}$-matrix, we can put any one of the $p^{2}-1$ nonzero row vectors in the first row, and then put any one of the $p^{2}-p$ row vectors which are not scalar multiples of the first row in the second row. Thus $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$ has order $\left(p^{2}-1\right)\left(p^{2}-p\right)$, which is indeed divisible by q.

In conclusion, in this case there exists a unique nonabelian semidirect product.
(C) Now there are $q q$-th roots of unity, forming a subgroup, necessarily cyclic, of \mathbf{Z}_{p}^{*}, with generator, say, ζ. The eigenvalues of A must then have the form $\left(\zeta^{a}, \zeta^{b}\right)$, where at least one of a, b, say a, is not divisible by q; and then if $c=a^{-1}(\bmod q)$, A^{c} has eigenvalues $\left(\zeta, \zeta^{d}\right)(0 \leq d<q)$, and A^{c} generates the same order- q subgroup, call it U, as A does.

Suppose B generates an order- q subgroup V, and that the eigenvalues of B are $\left(\zeta, \zeta^{e}\right)$. Then U is conjugate to V iff A is similar to some power B^{f}, i.e., the unordered pairs $\left(\zeta, \zeta^{d}\right)$ and $\left(\zeta^{f}, \zeta^{e f}\right)$ are the same. This means that either $f=1$ and $e=d$ or $f=d \neq 0$ and $e=d^{-1}$.

In conclusion, when q is odd and $q \mid(p-1)$, the set of conjugacy classes of order- q subgroups of $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$ corresponds 1-1 with the set consisting of the $(q-3) / 2$ pairs $\left(d, d^{-1}\right)\left(d \neq d^{-1} \in \mathbf{Z}_{q}^{*}\right)$ together with the pairs $(1,1),(1,-1)$, and $(1,0)$. Thus there are $(q+3) / 2$ such conjugacy classes, and correspondingly, there are $(q+3) / 2$ nonabelian semidirect products.

Question: Which of these is $\mathbf{Z}_{p} \times \mathbf{H}_{p q}$, where $\mathbf{H}_{p q}$ is the nonabelian group of order $p q$?

Exercise. How many distinct nonabelian groups are there having the following orders?

$$
98, \quad 147 \text { (cf. D\&F, p. 185,\#10), } 847, \quad 1183, \quad 5887 .
$$

